A nonlinear nonautonomous delay differential inequality for dissipativity of Lotka-Volterra functional differential equations

Liguang $Xu^{a,*}$, Danhua He^b

^a Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023, PR China

^b Department of Mathematics, Zhejiang International Studies University, Hangzhou, 310012, PR China *Corresponding Author

E-mail: xlg132@126.com

Abstract

In this paper, a Lotka-Volterra functional differential equation is considered. By establishing a nonlinear nonautonomous delay differential inequality and using a generalized Barbălat's lemma, we obtain some new sufficient conditions ensuring the dissipativity of the Lotka-Volterra functional differential equation.

2000 Mathematics Subject Classification. 34K38. 34K25.

Keywords. Lotka-Volterra functional differential equations, Nonlinear delay differential inequality, Dissipativity, Generalized Barbălat's lemma.

1 Introduction

Let H be a real or complex Hilbert space with the inner product $\langle \cdot, \cdot \rangle$ and the corresponding norm $\|\cdot\|$, X be a dense continuously imbedded subspace of H. For any given closed interval $I \subset R$, let the symbol $C_X(I)$ denote a Banach space consisting of all continuous mappings $x : I \to X$, on which the norm is defined by $\|x\|_{\infty} = \max_{t \in I} \|x(t)\|$. Consider the initial value problem in Lotka-Volterra functional differential equations

$$\begin{cases} y'(t) = g(t, y(t), y(\cdot)) = \eta(t, y(t))f(t, y(t), y(\cdot)), \ t \ge 0, \\ y(t) = \varphi(t), \ -\tau \le t \le 0, \end{cases}$$
(1)

where τ is a positive constant, $\varphi \in C_X[-\tau, 0]$ is a given initial function, $\eta : [0, +\infty) \times X \to H$ is a nonnegative continuous function, $f : [0, +\infty) \times X \times C_X[-\tau, +\infty) \to H$, and $g : [0, +\infty) \times X \times C_X[-\tau, +\infty) \to H$ is a given locally Lipschitz continuous mapping satisfying

$$2\Re < u, g(t, u, \psi(\cdot)) > \leq \eta(t, u) [\gamma(t) + \alpha(t) ||u||^2 + \beta(t) \max_{t - \mu_2(t) \leq \theta \leq t - \mu_1(t)} ||\psi(\theta)||^2],$$

$$u \in X, \psi \in C_X[-\tau, +\infty), t \in [0, +\infty),$$
(2)

where the functions $\mu_1(t)$ and $\mu_2(t)$ are assumed to satisfy

$$0 \le \mu_1(t) \le \mu_2(t) \le t + \tau, \forall t \in [0, +\infty), \tag{3}$$

 $\alpha(t)$ and $\beta(t)$ are continuous functions and $\gamma(t)$ is a bounded continuous functions on the interval $[0, +\infty)$.

Tbilisi Mathematical Journal 7(1) (2014), pp. **37–43**. Tbilisi Centre for Mathematical Sciences.

Received by the editors: 03 August 2012. Accepted for publication: 15 July 2014. Recently, Wen, Yu and Wang [1] discussed the dissipativity of (1) with $\eta(t, y(t)) \equiv 1$. They established the generalized Halanay inequality and obtained the dissipativity results of (1) with $\eta(t, y(t)) \equiv 1$. In this paper, we will improve the inequality in [1] such that it is effective for (1). By establishing a nonlinear nonautonomous delay differential inequality and using a generalized Barbălat's lemma, we obtain some new sufficient conditions ensuring the dissipativity of (1).

2 Nonlinear delay differential inequality

Theorem 2.1. If $y(t) \ge 0$ is a differentiable function defined on $(-\infty, +\infty)$, and

$$\begin{cases} u'(t) \le \eta(t, y(t))[\gamma(t) + \alpha(t)u(t) + \beta(t)\sup_{t-\tau(t)\le \theta\le t} u(\theta)], t \ge t_0, \\ y(t) = \psi(t), t \le t_0, \end{cases}$$

$$\tag{4}$$

where $u(t) = ||y(t)||^2$, and $\psi(t)$ is bounded and continuous for $t \le t_0$, continuous functions $\gamma(t) \ge 0$, $\beta(t) \ge 0$ and $\alpha(t) \le 0$ for $t \in [t_0, +\infty)$, $\tau(t) \ge 0$, $\eta : [0, +\infty) \times X \to H$ is a nonnegative continuous function, and if there exists $\sigma > 0$ such that

$$\alpha(t) + \beta(t) \le -\sigma < 0 \text{ for } t \ge t_0, \tag{5}$$

then we have
(i)

$$u(t) \le \frac{\gamma^*}{\sigma} + G, t \ge t_0.$$
(6)

(ii)

$$u(t) \le \frac{\gamma^*}{\sigma} + G e^{-\mu^* \int_{t_0}^t \eta(s, y(s)) ds}, t \ge t_0,$$
(7)

where $G = \sup_{-\infty < \theta \le t_0} \|\psi(\theta)\|^2$, $\gamma^* = \sup_{t_0 \le t < +\infty} \gamma(t)$, and $\mu^* \ge 0$ is defined as

$$\mu^* = \inf_{t \ge t_0} \{ \mu(t) : \mu(t) + \alpha(t) + \beta(t)e^{h\mu(t)\tau(t)} = 0 \},$$
(8)

where

$$h = \sup_{t \ge t_0} \max_{(s,u) \in [t-\tau,t] \times [0,\frac{\gamma^*}{\sigma} + G]} \eta(t,y) < \infty.$$

$$\tag{9}$$

Proof. (i): We at first shall prove that for any positive constant ε ,

$$u(t) \le \frac{\gamma^* + \varepsilon}{\sigma} + G, t \ge t_0.$$
(10)

If (10) does not hold, then there exists $t_1 > t_0$ such that

$$u(t_1) = \frac{\gamma^* + \varepsilon}{\sigma} + G, u'(t_1) > 0, u(t) \le \frac{\gamma^* + \varepsilon}{\sigma} + G, t \in (-\infty, t_1].$$

$$(11)$$

Unauthenticated Download Date | 2/27/18 12:43 PM A nonlinear nonautonomous delay differential inequality

Using (4), (5) and (11), we obtain that

$$u'(t_1) \leq \eta(t_1, y(t_1))[\gamma(t_1) + \alpha(t_1)u(t_1) + \beta(t_1) \sup_{t_1 - \tau(t_1) \leq \theta \leq t_1} u(\theta)]$$

$$\leq \eta(t_1, y(t_1))[\gamma^* + \alpha(t_1)(\frac{\gamma^* + \varepsilon}{\sigma} + G) + \beta(t_1)(\frac{\gamma^* + \varepsilon}{\sigma} + G)]$$

$$\leq \eta(t_1, y(t_1))[\frac{\gamma^* + \varepsilon}{\sigma}(\sigma + \alpha(t_1) + \beta(t_1)) + G(\alpha(t_1) + \beta(t_1))]$$

$$\leq -\eta(t_1, y(t_1))\sigma G \leq 0.$$
(12)

This contradicts the inequality in (11), and so (10) holds. Since $\varepsilon > 0$ is arbitrary, we let $\varepsilon \to 0$ and obtain (6).

(ii): By (6), one can know that the definition of h for (9) is reasonable. Denote

$$H(\mu) = \mu + \alpha(t) + \beta(t)e^{h\mu\tau(t)}.$$
(13)

For any fixed $t \ge t_0$, we see that

$$H(0) = \alpha(t) + \beta(t) \le -\sigma < 0, \lim_{\mu \to +\infty} H(\mu) = +\infty$$
(14)

and

$$H'(\mu) = 1 + \tau(t)\beta(t)he^{\mu h\tau(t)} > 0.$$
(15)

Therefore for any given $t \ge t_0$ there is a unique positive μ such that

$$\mu + \alpha(t) + \beta(t)e^{h\mu\tau(t)} = 0, \qquad (16)$$

that means the (16) define an implicit function $\mu(t)$ for $t \ge t_0$. From that definition, one has $\mu^* \ge 0$. Next, we at first shall prove that for any positive constant ε ,

$$u(t) \le \frac{\gamma^* + \varepsilon}{\sigma} + Ge^{-\mu^* \int_{t_0}^t \eta(s, y(s))ds} \stackrel{\Delta}{=} v(t), t \ge t_0.$$
(17)

If (17) is not true, then there exists a constant $\xi > t_0$ such that

$$u(\xi) = v(\xi), u'(\xi) > v'(\xi), u(t) \le v(t), t \in [t_0, \xi).$$
(18)

Let w(t) = v(t) - u(t), then we have

$$w'(\xi) = v'(\xi) - u'(\xi) \geq -G\mu^* \eta(\xi, y(\xi)) e^{-\mu^* \int_{t_0}^{\xi} \eta(s, y(s)) ds} - \eta(\xi, y(\xi)) [\gamma(\xi) + \alpha(\xi) u(\xi) + \beta(\xi) \sup_{\xi - \tau(\xi) \le \theta \le \xi} u(\theta)] > -G\mu^* \eta(\xi, y(\xi)) e^{-\mu^* \int_{t_0}^{\xi} \eta(s, y(s)) ds} - \eta(\xi, y(\xi)) [\gamma^* + \varepsilon + \alpha(\xi) u(\xi) + \beta(\xi) \sup_{\xi - \tau(\xi) \le \theta \le \xi} u(\theta)].$$
(19)

Unauthenticated Download Date | 2/27/18 12:43 PM If $\xi - \tau(\xi) \ge t_0$, it follows from (19) that

$$w'(\xi) \geq -G\mu^*\eta(\xi, y(\xi))e^{-\mu^*\int_{t_0}^{\xi}\eta(s, y(s))ds} - \eta(\xi, y(\xi))[\gamma^* + \varepsilon + \alpha(\xi)(\frac{\gamma^* + \varepsilon}{\sigma} + Ge^{-\mu^*\int_{t_0}^{\xi}\eta(s, y(s))ds})] + \beta(\xi)(\frac{\gamma^* + \varepsilon}{\sigma} + Ge^{-\mu^*\int_{t_0}^{\xi-\tau(\xi)}\eta(s, y(s))ds})] = \eta(\xi, y(\xi))[-\frac{\gamma^* + \varepsilon}{\sigma}(\sigma + \alpha(\xi) + \beta(\xi)) - Ge^{-\mu^*\int_{t_0}^{\xi}\eta(s, y(s))ds}(\mu^* + \alpha(\xi) + \beta(\xi)e^{\mu^*\int_{\xi-\tau(\xi)}^{\xi}\eta(s, y(s))ds}).$$
(20)

From the define of function $\mu(t)$, we have

$$\mu^{*} + \alpha(\xi) + \beta(\xi)e^{\mu^{*}\int_{\xi-\tau(\xi)}^{\xi}\eta(s,y(s))ds} = \mu^{*} + \alpha(\xi) + \beta(\xi)e^{\mu^{*}\int_{\xi-\tau(\xi)}^{\xi}\eta(s,y(s))ds} - \mu(\xi) - \alpha(\xi) - \beta(\xi)e^{h\mu(\xi)\tau(\xi)} = (\mu^{*} - \mu(\xi)) + \beta(\xi)(e^{\mu^{*}\int_{\xi-\tau(\xi)}^{\xi}\eta(s,y(s))ds} - e^{h\mu(\xi)\tau(\xi)}) \le 0.$$
(21)

Noting (5), therefore (20) yields

$$w'(\xi) = v'(\xi) - u'(\xi) \ge 0,$$
(22)

which contradicts the first inequality in (18). If $\xi - \tau(\xi) < t_0$, it follows from (19) that

$$w'(\xi) \geq -G\mu^*\eta(\xi, y(\xi))e^{-\mu^*\int_{t_0}^{\xi}\eta(s, y(s))ds} - \eta(\xi, y(\xi))[\gamma^* + \varepsilon + \alpha(\xi)(\frac{\gamma^* + \varepsilon}{\sigma} + Ge^{-\mu^*\int_{t_0}^{\xi}\eta(s, y(s))ds}) + \beta(\xi)\max\{\sup_{\theta\leq t_0}u(\theta), \sup_{t_0\leq\theta\leq\xi}u(\theta)\}]$$

$$\geq -G\mu^*\eta(\xi, y(\xi))e^{-\mu^*\int_{t_0}^{\xi}\eta(s, y(s))ds} - \eta(\xi, y(\xi))[\gamma^* + \varepsilon + \alpha(\xi)(\frac{\gamma^* + \varepsilon}{\sigma} + Ge^{-\mu^*\int_{t_0}^{\xi}\eta(s, y(s))ds}) + \beta(\xi)(G + \frac{\gamma^* + \varepsilon}{\sigma})]$$

$$= \eta(\xi, y(\xi))[-\frac{\gamma^* + \varepsilon}{\sigma}(\sigma + \alpha(\xi) + \beta(\xi)) - Ge^{-\mu^*\int_{t_0}^{\xi}\eta(s, y(s))ds}(\mu^* + \alpha(\xi) + \beta(\xi)e^{\mu^*\int_{\xi-\tau(\xi)}^{\xi}\eta(s, y(s))ds}) + \beta(\xi)(g^{\mu^*}\int_{\xi-\tau(\xi)}^{\xi}\eta(s, y(s))ds}) + \beta(\xi)(g^{\mu^*}\int_{\xi-\tau(\xi)}^{\xi}\eta(s, y(s))ds}) = \eta(\xi, y(\xi))[-\frac{\gamma^* + \varepsilon}{\sigma}(\sigma + \alpha(\xi) + \beta(\xi)) - Ge^{-\mu^*\int_{t_0}^{\xi}\eta(s, y(s))ds}(\mu^* + \alpha(\xi) + \beta(\xi)e^{\mu^*}\int_{\xi-\tau(\xi)}^{\xi}\eta(s, y(s))ds}).$$

$$(23)$$

Here we also obtain that (22) holds, which contradicts the first inequality in (18). Hence the inequality (17) must hold. Since $\varepsilon > 0$ is arbitrary, we let $\varepsilon \to 0$ and obtain (7). The proof of Theorem 2.1 is completed. \Box

Remark 2.2. Suppose that $\eta(t, y(t)) \equiv 1$ in Theorem 2.1, then we get Theorem 2.4 in [1].

3 Dissipativity of Lotka-Volterra functional differential equations

Definition 3.1. (See [1]) System (1) is said to be dissipative in H if there exists a bounded set $B \subset H$, such that for any given bounded set $\Phi \subset H$, there is a time $t^* = t^*(\Phi)$, such that for

A nonlinear nonautonomous delay differential inequality

any given initial function $\varphi \in C_X[-\tau, 0]$ with φ contained in Φ for all $t \in [-\tau, 0]$, the values of the corresponding solution y(t) of the problem are contained in B for all $t \ge t^*$. Here B is called an absorbing set of the problem.

Lemma 3.2. (Generalized Barbălat's lemma [2]) If

 $\begin{array}{l} (H_1) \ u: \mathbb{R}_+ \to \mathbb{R}^n \text{ is uniformly continuous;} \\ (H_2) \ g: \mathbb{R}^n \to \mathbb{R} \text{ is continuous and } g(x) = 0 \text{ iff } x = 0; \\ (H_3) \ h: \mathbb{R}_+ \to \mathbb{R}_+ \text{ satisfies } \mathcal{K}(\delta) \stackrel{\Delta}{=} \inf_{t \ge 0} \int_t^{t+\delta} h(s) ds > 0, \text{ for any } \delta > 0; \\ (H_4) \ \lim_{t \to \infty} \int_0^t h(s) g(u(s)) ds \text{ exists and is finite;} \\ \text{then } \lim_{t \to \infty} u(t) = 0. \end{array}$

Theorem 3.3. Suppose that y(t) is a solution of the problem (1) satisfying the condition (2), and there exists a constant $\sigma > 0$ such that

$$\alpha(t) + \beta(t) \le -\sigma < 0 \text{ for } t \ge 0.$$
(24)

Then

(i)

$$\|y(t)\|^2 \le \frac{\bar{\gamma}^*}{\sigma} + \bar{G}, t \ge 0.$$
 (25)

(ii)

$$\|y(t)\|^{2} \leq \frac{\bar{\gamma}^{*}}{\sigma} + \bar{G}e^{-\mu^{*}\int_{t_{0}}^{t}\eta(s,y(s))ds}, t \geq 0,$$
(26)

where $\bar{G} = \sup_{-\infty < \theta \le 0} \|\varphi(\theta)\|^2$, $\bar{\gamma}^* = \sup_{0 \le t < +\infty} \gamma(t)$, and $\bar{\mu}^* \ge 0$ is defined as

$$\bar{\mu}^* = \inf_{t \ge 0} \{ \mu(t) : \mu(t) + \alpha(t) + \beta(t)e^{h\mu(t)\tau(t)} = 0 \},$$
(27)

where

$$\bar{h} = \sup_{t \ge 0} \max_{(s, \|y\|^2) \in [t-\tau, t] \times [0, \frac{\bar{\gamma}^*}{\sigma} + \bar{G}]} \eta(t, y) < \infty.$$

$$\tag{28}$$

Proof. To apply the result of Theorem 2.1, we have to extend the define of initial function in (1) as $y(t) = \varphi(-\tau)$ for $-\infty < t \le \tau$.

Let

$$u(t) = ||y(t)||^2 = \langle y(t), y(t) \rangle.$$
(29)

From (2), we have

$$u'(t) = \frac{d}{dt} < y(t), y(t) >= 2\Re < y(t), g(t, y(t), y(\cdot)) >$$

$$\leq \eta(t, y(t))[\gamma(t) + \alpha(t)u(t) + \beta(t) \max_{t-\mu_2(t) \le \theta \le t-\mu_1(t)} u(\theta)]$$

$$\leq \eta(t, y(t))[\gamma(t) + \alpha(t)u(t) + \beta(t) \max_{t-\mu_2(t) \le \theta \le t} u(\theta)].$$
(30)

Unauthenticated Download Date | 2/27/18 12:43 PM Application of Theorem 2.1 to the above inequality yields (25) and (26). The proof is completed. \Box

Corollary 3.4. In addition to the conditions of Theorem 3.3 hold, further assume that $\eta(s, y(s)) \ge \delta > 0$. Then,

(i) for any given $\varepsilon > 0$, there exists a positive number $t^*(\|\varphi\|_{\infty}, \varepsilon)$, such that

$$\|y(t)\|^2 \le \frac{\bar{\gamma}^*}{\sigma} + \varepsilon, \forall t > t^*.$$

(ii) For any given $\varepsilon > 0$, the problem (1) is dissipative with an absorbing set $B = B(0, \sqrt{\frac{\tilde{\gamma}^*}{\sigma} + \varepsilon})$.

Theorem 3.5: In addition to the conditions of Theorem 3.3 hold, further assume that $\eta(s, y(s)) = h(s)g(y(s))$, where g and h satisfy (H_2) and (H_3) of Lemma 3.2, respectively. Then, for any given $\varepsilon > 0$, the problem (1) is dissipative with an absorbing set $B = B(0, \sqrt{\frac{\tilde{\gamma}^*}{\sigma} + \varepsilon})$.

Proof: We only need to consider the following two possible cases:

(i) If $\int_0^\infty \eta(s, y(s)) ds = \infty$, then from (26) we have $\lim_{t \to \infty} \|y(t)\| \le \sqrt{\frac{\bar{\gamma}^*}{\sigma}}$.

(ii) If $\int_0^\infty \eta(s, y(s)) ds < \infty$, then $h(s)g(y(s)) \in L[0, \infty)$. From (25) and (30), we know that $\dot{y}(t)$ is bounded. So y(t) is a uniformly continuous function. By Lemma 3.2, we have $\lim_{t\to\infty} y(t) = 0 \leq \sqrt{\frac{\tilde{\gamma}^*}{\sigma}}$.

From above (i) and (ii), we know the problem (1) is dissipative with an absorbing set $B = B(0, \sqrt{\frac{\tilde{\gamma}^*}{\sigma} + \varepsilon})$. The proof is completed. \Box

Corollary 3.6. In addition to the conditions of Theorem 3.3 hold. If $\eta(s, y(s)) = g(y(s))$, where $g(\cdot)$ is a continuous, positive definite function, then for any given $\varepsilon > 0$, system (1) is dissipative with an absorbing set $B = B(0, \sqrt{\frac{\tilde{\gamma}^*}{\sigma} + \varepsilon})$.

Remark 3.7. In the recent years, various generalized Halanay inequalities have been established and successfully applied to the problem of investigating the dissipativity of differential systems, [1,3-6]. However, the generalized Halanay inequalities in [1,3-6] are ineffective for studying the dissipativity of (1) due to the existence of the term " $\eta(t, y(t))$ " of (1), unless one resorts to the rather restrictive condition that $\eta(t, y(t)) \ge \delta > 0$ (δ is a constant).

Acknowledgement

The work is supported by National Natural Science Foundation of China (Grant No. 11101367) and the China Scholarship Council (Grant No. 201208330001).

References

 L.P. Wen, Y.X. Yu and W.S. Wang, Generalized Halanay inequalities for dissipativity of Volterra functional differential equations, J. Math. Anal. Appl. 347 (2008), 169-178. A nonlinear nonautonomous delay differential inequality

- [2] D.Y. Xu and L.G. Xu, New results for studying a certain class of nonlinear delay differential systems, IEEE Trans. Autom. Control 55 (2010), 1641-1645.
- [3] L.P. Wen, W.S. Wang and Y.X. Yu, Dissipativity and asymptotic stability of nonlinear neutral delay integro-differential equations, Nonlinear Anal. 72 (2010), 1746-1754.
- [4] H.J. Tian, Numerical and analytic dissipativity of the h-method for delay differential equations with a bounded variable lag, Int. J. Bifur. Chaos 14 (2004), 1839-1845.
- [5] S.Q. Gan, Dissipativity of linear θ -methods for integro-differential equations, Comput. Math. Appl. 52 (2006), 449-458.
- [6] S.Q. Gan, Dissipativity of θ-methods for nonlinear Volterra delay-integro-differential equations, J. Comput. Appl. Math. 206 (2007), 898-907.